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Abstract
The tomographic-probability distribution for a measurable coordinate and spin
projection is introduced to describe quantum states as an alternative to the
density matrix. An analogue of the Pauli equation for the spin- 1

2 particle is
obtained for such a probability distribution instead of the usual equation for the
wavefunction. Examples of the tomographic description of Landau levels and
coherent states of a charged particle moving in a constant magnetic field are
presented.

PACS numbers: 0365B, 0365C

1. Introduction

Since the early days of quantum mechanics, we have been forced to coexist with complex
probability amplitudes without worrying about their lack of any reasonable physical meaning.
One should not ignore, however, that the wave-like properties of quantum objects still raise
conceptual problems, on whose solutions a general consensus is far from having been reached
[1, 2].

A possible way out of this difficulty has been implicitly suggested by Feynman [3], who has
shown that, by dropping the assumption that the probability for an event must always be non-
negative, one can avoid the use of probability amplitudes in quantum mechanics. This proposal
goes back to the work of Wigner [4], who first introduced non-positive pseudoprobabilities
to represent quantum mechanics in phase space, and to the Moyal approach to quantum
mechanics [5].

From a conceptual point of view, the elimination of the waves from quantum theory is in
line with the procedure inaugurated by Einstein with the elimination of the ether in the theory
of electromagnetism.

The phase-space formulation of quantum mechanics [4, 6, 7] provides a means
of analysing quantum-mechanical systems while still employing a classical framework.
Moreover, a quantum mechanics without wavefunctions has been discussed in several papers
[8].
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Recently, the problem of quantum state measurement, initially posed by Pauli [9], received
a lot of attention [10]. The tomographic approach [11,12] to the quantum state of a system has
allowed one to establish a map between the density operator (or any its representation) and a
set of probability distributions, often called ‘marginals’. The latter have all the characteristics
of classical probabilities; they are non-negative, measurable and normalized.

Based on this connection, a classical-like description of quantum dynamics by means of
‘symplectic tomography’ has been formulated [13], providing a bridge between classical and
quantum worlds. That is, the evolution of a quantum system with continuous observables
(namely, quadrature components of a field mode) was described in terms of a classical-like
equation for a marginal distribution. Different aspects of this classical-like description using
tomographic probabilities were recently analysed [14, 15].

On the other hand, discrete observables, such as spin or angular momentum, are as
important in quantum mechanics as the continuous ones. Hence, the tomography scheme for
discrete variables was introduced [16], and the marginal distribution for rotated spin variables
has been constructed [17], deriving an evolution equation for this function. The same avenue
has been followed recently in [18].

Here, we would extend the approach by considering a spin- 1
2 particle moving in a potential,

then constructing the marginal distributions for space coordinates and spin projections, and
finally deriving the evolution equation for such probabilities, which would be an analogue of
the Pauli equation. It would also be a generalization of approaches attempted in our previous
papers [13].

Essentially, our aim is to eliminate the hybrid procedure of describing the dynamical
evolution of a system, which consists of the first stage where the theory provides a deterministic
evolution of the wavefunction, followed by a hand-made construction of the physically
meaningful probability distributions. If the probabilistic nature of the microscopic phenomena
is fundamental and not simply due to our ignorance, as in classical statistical mechanics, why
should it be impossible to describe them in probabilistic terms from the very beginning? On the
other hand, the language of probability, suitably adapted to take into account all the relevant
constraints, seems to be the only language capable of expressing the fundamental role of
‘chance’ in nature [19].

The paper is organized as follows. In section 2, we review the general approach to
construct known tomography schemes using a density matrix in the specifically transformed
reference frames. In section 3, we derive the general evolution equation for tomographic
probabilities (marginal distributions), which describe the quantum state instead of the density
matrix. In section 4, the general scheme of tomography construction is used to rederive the
particular example of symplectic tomography, which is applied for measuring states depending
on continuous quadrature. In section 5, the general scheme is used to rederive the construction
of spin-state tomography. In section 6, the general scheme of section 2 is applied to obtain
tomographic probabilities in the combined situation described by spatial (multidimensional
as well) and spin variables. In section 7, some examples are studied in the context of the
probability representation of quantum mechanics. Section 8 gives conclusions. Herein, we
use natural units (h̄ = c = 1).

2. General approach to quantum tomography

In this section, we give a short review of the general principles used to construct a tomography
scheme for measuring quantum states. Recently, we established a quite general principle of
constructing measurable probabilities, which completely determine the quantum state in the
tomographic approach [20]; more refined treatments then followed [21,22]. Here, we apply our
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general approach to derive the evolution equation for the tomographic probabilities, which is
an alternative in some sense to the Schrödinger equation for the wavefunction (or the quantum
Liouville equation for the density matrix).

Let us consider a quantum state described by the density operator ρ̂, which is a non-
negative Hermitian operator, i.e.

ρ̂† = ρ̂ Tr ρ̂ = 1 (1)

and

〈v|ρ̂|v〉 = ρv,v � 0. (2)

We label the vector basis |v〉 in the space of pure quantum states by the multidimensional
index v = (v1, v2, . . . , vN), where the number N shows the number of degrees of freedom
of the system under consideration. Among indices vk , k = 1, . . . , N , there are continuous
ones such as position (or momentum) and discrete ones such as spin projections. In this sense,
the wavefunction ψ(v) = 〈v|ψ〉 of a pure state |ψ〉 depends both on continuous and discrete
observables. Formula (2) can be rewritten by using the Hermitian projection operator

�̂v = |v〉〈v| (3)

in the following form:

ρv,v = Tr
{
�̂vρ̂

}
. (4)

The physical meaning of the projector �̂v is that it extracts the state |v〉 with given v (for
example, with given position and spin projection), which is an eigenstate of the commuting
Hermitian operators V̂ = (

V̂1, V̂2, . . . , V̂N

)
V̂k|v〉 = vk|v〉. (5)

In the space of states, there is a family of unitary transformation operators Û (σ ) depending
on the parameters σ = (σ1, . . . , σk . . .), that can be sometimes identified with group-
representation operators. In these cases, the parameters σ describe the group element. It
was shown [20, 23] that known tomography schemes can be considered from the viewpoint
of group theory by using appropriate groups. More recently this concept has been developed
obtaining an elegant group-theoretical approach to quantum-state measurement [22]. Here,
we formulate the tomographic approach in the following way. Let us introduce a ‘transformed
density operator’

ρ̂σ = Û−1(σ )ρ̂Û (σ ). (6)

Its diagonal elements are still non-negative probabilities

〈z|ρ̂σ |z〉 = 〈〈z|ρ̂|z〉〉 ≡ w(z, σ ) (7)

where |z〉 is one of the possible vectors |v〉, while the symbol |z〉〉 denotes the transformed
vectors

|z〉〉 = Û (σ )|z〉 (8)

which in turn are eigenstates of the transformed operators

Ẑ = Û (σ )V̂ Û−1(σ ). (9)
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As a consequence of the unit trace of the density operator, we also have the normalization
condition ∫

dzw(z, σ ) = 1. (10)

Of course, in the case of discrete indices, the integral in (10) is replaced by a sum over discrete
variables.

Formula (7) can be interpreted as the probability density for the measurement of the
observable V̂ in an ensemble of transformed reference frames labelled by the index σ , if the
state ρ̂ is given. Along with this interpretation, one can also consider the transformed projector

�̂z(σ ) = Û (σ )�̂zÛ
−1(σ ) = |z〉〉〈〈z|. (11)

The explicit expression for the probability w(z, σ ) takes the form

w(z, σ ) = Tr
{
ρ̂�̂z(σ )

} = Tr
{
ρ̂|z〉〉〈〈z|}. (12)

These probability densities are also called ‘marginal’ distributions as a generalization of the
concept introduced by Wigner [4]. The tomography schemes are based on the possibility of
finding the inverse of equation (12). If it is possible to solve equation (12) by considering the
probability w(y, σ ) as a known function and the density matrix as an unknown operator, the
quantum state can be described by the positive probability instead of the density matrix. This
property is the essence of state-reconstruction techniques. In such cases, the inverse of (12)
takes the form

ρ̂ =
∫

dz dσ w(z, σ )K̂(z, σ ). (13)

Thus, there exists a family of operators K̂(z, σ ) depending on both the variables z and the
parametersσ such that the density operator is reconstructed, if the probabilityw(z, σ ) is known.
It is worth remarking that transformations Û (σ ) can form other algebraic constructions, which
do not have the group structure [23]. The only condition for the existence of a tomography
scheme is the possibility of inverting (12). In the cases of optical tomography [12] symplectic
tomography [13], and spin tomography [17, 24], the sets of transformations Û (σ ) have the
structure of corresponding Lie groups (i.e. rotation group O(2), symplectic group Sp(2R) and
SU2 group).

3. The time evolution equation

We are now interested in obtaining the evolution equation for the probability w
(
z, σ, t

)
, in

which t is the time parameter. Using equation (12) one has

∂t w(z, σ, t) = Tr
{
[∂t ρ̂(t)]�̂z(σ )

}
. (14)

On the other hand, the density operator satisfies the Liouville–von Neumann equation

∂t ρ̂(t) = i
[
ρ̂(t), Ĥ

]
(15)

where Ĥ is the Hamiltonian of the system. By inserting equation (15) in (14), and in view of
equation (13), we obtain the evolution equation for the probability w in a closed form

∂t w(z, σ, t) =
∫

dz′ dσ ′ w(z′, σ ′, t)Tr
{
i
[
K̂(z′, σ ′), Ĥ

]
�̂z(σ )

}
. (16)

Equation (16) represents the classical-like version of the Liouville–von Neumann equation,
thus, it would be the analogue of the Pauli equation for a system with space and spin degrees
of freedom.



The Pauli equation for probability distributions 3465

4. Quantum tomography with continuous variables

For a one-dimensional system, we consider an operator X̂ as the linear combination of position
q̂ and momentum p̂ [25, 26]

X̂ = µq̂ + νp̂ (17)

which depends on real parameters µ, ν; X is a measurable observable due to its Hermiticity.
Since the linear canonical transformation (17) belongs to the symplectic group Sp(2, R), the
tomography scheme under discussion was called ‘symplectic tomography’ [26, 27].

The probability (marginal) related to the observable (17) is given by

w(x,µ, ν) = 〈〈x|ρ̂|x〉〉 (18)

where ρ̂ is the system’s density operator, while the eigenstates |x〉〉 of the operator (17) can be
written as

|x〉〉 =
∫

dq 〈q|x〉〉 |q〉 (19)

with |q〉 the position eigenkets. The wavefunction 〈q|x〉〉 can be easily calculated by using the
following equality:

〈q|X̂|x〉〉 = 〈q|µq̂ + νp̂|x〉〉. (20)

Equation (20) can be transformed into the partial differential equation

x 〈q|x〉〉 = µq 〈q|x〉〉 − iν
∂

∂q
〈q|x〉〉. (21)

The solution is

〈q|x〉〉 =
(

i

2πν

)1/2

exp

[
i
x

ν
q − i

2

µ

ν
q2

]
. (22)

It is worth noting that as soon as µ → 1 and ν → 0, the transformed position state |x〉〉 → |x〉
and the wavefunction (22) tends to δ(q − x).

Furthermore, equation (18) can be formally rewritten as

w(x,µ, ν) = Tr
{
ρ̂�̂x(µ, ν)

}
(23)

with the transformed projector being given by

�̂x(µ, ν) = Û (µ, ν)�̂xÛ
−1(µ, ν) �̂x = |x〉〈x| (24)

where the transformation Û (σ ) is chosen to be the symplectic-group representation [20]

Û (µ, ν) = exp

[
iλ

2

(
q̂p̂ + p̂q̂

)]
exp

[
iφ

(
p̂2

2
+
q̂2

2

)]
. (25)

The rotation and scaling parameters φ and λ are related to µ and ν by the following formulae:

µ = eλ cosφ ν = e−λ sin φ

φ = 1
2 arcsin(2µν) e2λ = 1 −

√
1 − 4µ2ν2

2ν2
.

(26)
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This means that the marginal distribution w(x, µ, ν), for this particular case of symplectic
tomography, is given by the relationship

w(x,µ, ν) = Tr

{
|x〉〈x| exp

[
−iφ

(
p̂2

2
+
q̂2

2

)]
exp

[
− iλ

2
(q̂p̂ + p̂q̂)

]

× ρ̂ exp

[
iλ

2
(q̂p̂ + p̂q̂)

]
exp

[
iφ

(
p̂2

2
+
q̂2

2

)]}
. (27)

Such measurable probability can be expressed explicitly as [27]

w(x,µ, ν) =
∫

dy dk exp

[
−ikx +

iµνk2

2
+ ikyµ

]
ρ(y + νk, y) (28)

where ρ(y + νk, y) = 〈y + νk|ρ̂|y〉 is the representation of the density matrix over the position
eigenkets. The marginal satisfies the following homogeneous property:

w(x,µ, κν) = 1

|κ| w
(
x

κ
,
µ

κ
, ν

)
w(x, κµ, ν) = 1

|κ| w
(
x

κ
, µ,

ν

κ

)
. (29)

The above relation (28) can be inverted [26] as

ρ̂ =
∫

dx dµ dν w(x, µ, ν) K̂(x, µ, ν) (30)

where the kernel operator takes the form

K̂(x, µ, ν) = 1

2π
ε2 exp

[
−iεX +

iε2µν

2

]
eiεµq̂ eiενp̂. (31)

Here, ε can be set equal to unity; this freedom reflects the overcompleteness of the information
obtainable by means of all possible marginals (27) [25, 26].

The multimode generalization [26] is straightforward, and the analogue of formula (27)
holds with the following replacement:

|x〉 −→ |�x 〉 �x = (x1, x2, . . .)

φ

(
p̂2

2
+
q̂2

2

)
−→ φ1

(
p̂2

1

2
+
q̂2

1

2

)
+ φ2

(
p̂2

2

2
+
q̂2

2

2

)
+ · · · (32)

λ
(
q̂p̂ + p̂q̂

) −→ λ1
(
q̂1p̂1 + p̂1q̂1

)
+ λ2

(
q̂2p̂2 + p̂2q̂2

)
+ · · · .

Relations of the parameters λk and φk to the parameters µk and νk are the same as given by
equation (26).

5. Quantum tomography with discrete variables

In this section, we consider a spin-j system. Following [17, 24] we derive the expression for
the density matrix of a spin state in terms of measurable probability distributions.

For arbitrary values of spin, let the spin state have the density matrix

ρ
(j)

mm′ = 〈jm|ρ̂(j)|jm′〉 m = −j,−j + 1, . . . , j − 1, j (33)

where

ĵ3|jm〉 = m|jm〉 ĵ 2|jm〉 = j (j + 1)|jm〉 (34)
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and

ρ̂(j) =
j∑

m=−j

j∑
m′=−j

ρ
(j)

mm′ |jm〉〈jm′|. (35)

The operator ρ̂(j) is the density operator of the state under consideration.
The general group construction of tomographic schemes [20] was also used for spin

tomography [17, 24]. The idea is to consider the diagonal elements of the density matrix ρ̂ in
another reference frame, i.e. in the rotated reference frame. To this end, we introduce a rotated
measurable spin projection

Ĵ3(α, β, γ ) = D̂(α, β, γ )ĵ3D̂
−1(α, β, γ ) (36)

where the unitary rotation operator D̂ depends on the Euler angles α, β, γ . The role of
the observable Ẑ is now played by the spin projection Ĵ3, while the rotation–transformation
parameters are the Euler angles σ1 = α, σ2 = β and σ3 = γ . The transformation Û (σ ) is
given by the matrix representation of the rotation group, i.e. by the Wigner D-function [28].

The marginals are

w(s, α, β, γ ) = 〈〈js|ρ̂|js〉〉 (37)

where the rotated spin states become

|js〉〉 =
j∑

m=−j

D(j) ∗
s m (α, β, γ )|jm〉. (38)

Here, the matrix elements D(j)

m′ m(α, β, γ ) (Wigner D-functions) are the matrix elements of the
rotation-group representation [28]

D
(j)

m′m(α, β, γ ) = eim′γ d
(j)

m′m(β) eimα (39)

where

d
(j)

m′m(β) =
[
(j + m′)!(j − m′)!
(j + m)!(j − m)!

]1/2 (
cos

β

2

)m′+m(
sin

β

2

)m′−m

P
(m′−m,m′+m)
j−m′ (cosβ) (40)

with P (a,b)
n (x) being the Jacobi polynomials [28].

Moreover, the transformed spin projector will be

�̂s(α, β, γ ) = D̂(α, β, γ )|js〉〈js|D̂−1(α, β, γ ) = |js〉〉〈〈js|. (41)

Then, we have

w(s, α, β, γ ) =
j∑

m1=−j

j∑
m2=−j

D(j)
s m1

(α, β, γ ) ρ(j)
m1 m2

D(j) ∗
s m2

(α, β, γ ). (42)

Since

D
(j)∗
m′m(α, β, γ ) = (−1)m

′−mD
(j)

−m′−m(α, β, γ ) (43)

the marginal distribution really depends only on two angles, α and β. Hence

w(s, α, β, γ ) → w(s, α, β) (44)

which satisfies the normalization condition
j∑

s=−j

w(s, α, β) = 1. (45)
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As an example, for a spin- 1
2 state with spin projection equal to 1

2 , we have

ρ̂ =
(

1 0
0 0

)
(46)

and the marginal distributions are

w
(
s = 1

2 , α, β
) = cos2 β

2
w
(
s = − 1

2 , α, β
) = sin2 β

2
. (47)

In [17, 24], in view of the properties of the Wigner D-function and the Clebsch–Gordan
coefficients, equation (42) was inverted and the density matrix was expressed in terms of the
marginal distribution

ρ(j)
m1 m2

= (−1)m2

2j∑
j3=0

j3∑
m3=−j3

(2j3 + 1)2
j∑

s=−j

∫
(−1)sw(s, α, β)

×D
(j3)

0m3
(α, β, γ )Wj

s
j
−s

j3
0 Wj

m1

j
−m2

j3
m3

d6

8π2
(48)

where m1,m2 = −j,−j + 1, . . . , j and W
j1
m1

j2
m2

j3
m3 are the Wigner-3j symbols [28]. The

integration is performed over the rotation parameters, i.e.∫
d6 =

∫ 2π

0
dα
∫ π

0
sin β dβ

∫ 2π

0
dγ. (49)

Equation (48) can be presented in an invariant operator form [24]. We systematically introduce
the following notation, first for the function on the unit sphere

7
(j3)

j m1 m2
(α, β) = (−1)m2

j3∑
m3=−j3

D
(j3)

0m3
(α, β, γ )Wj

m1

j
−m2

j3
m3

(50)

and then for the operator on the unit sphere

Â
(j3)

j (α, β) = (2j3 + 1)2
j∑

m1=−j

j∑
m2=−j

|jm1〉7(j3)

j m1 m2
(α, β) 〈jm2|. (51)

In order to write the final expression for the density operator, we introduce an operator on the
unit sphere, which contains a dependence on the measurable projection of the spin

K̂(j)(s, α, β) = (−1)s
2j∑

j3=0

Wj
s

j
−s

j3
0 Â

(j3)

j (α, β). (52)

Finally, we obtain a compact expression for the density operator

ρ̂(j) =
j∑

s=−j

∫
d6

8π2
w(s, α, β)K̂(j)(s, α, β). (53)

Formula (53) admits the following interpretation. To determine the spin state for a spin j ,
one has to measure experimentally the projection s of the spin for each direction specified
by the angles α and β, obtaining a distribution function w(s, α, β). The sum on the right-
hand side of equation (53) for a given point on the unit sphere represents the average operator
〈K̂(j)(s, α, β)〉. Then, the integral over the whole solid angle gives the desired density operator.
Finally, we recognize that, for the spin case, the operator (52) plays the role of the operator
K̂(z, σ ) of equation (13), employed in the general scheme of section 2.



The Pauli equation for probability distributions 3469

6. The general case

We are now able to consider the case of a particle with N − 1 spatial degrees of freedom plus
one spin- 1

2 degree. In this case, the state vector |v〉 has the form

|�q,m〉 = |q1, . . . qN−1〉 ⊗ | 1
2 , m〉 (54)

where �q is the eigenvalue of the position operator �̂q and the spin projection m = (− 1
2 ,

1
2 ) is

the eigenvalue of the Pauli matrix σ̂z.
The transformation operator Û (σ ) used to construct the tomography scheme, for this case,

depends on 2(N − 1) parameters, determining the symplectic transform, and on three Euler
angles determining the spin rotation.

The transformation operator Û (σ ) of equation (6) becomes the product of operators

Û (σ ) = N−1⊗
k=1

Û (µk, νk) ⊗ Û (α, β, γ ). (55)

For the case of spin 1
2 , the representation of the rotation group is given by

D(α, β, γ ) =
(

eiα/2 cos(β/2) e−iγ /2 −e−iα/2 sin(β/2) eiγ /2

eiα/2 sin(β/2) e−iγ /2 e−iα/2 cos(β/2) eiγ /2

)
(56)

which determines the operator

Û (α, β, γ ) =
1/2∑

m1=−1/2

1/2∑
m2=−1/2

D(1/2)
m1 m2

(α, β, γ )| 1
2 , m1〉〈 1

2 , m2|. (57)

The marginal distribution w(z, σ ) (12) depends on N − 1 continuous (non-compact)
variables z1 = x1, . . . , zN−1 = xN−1 and one discrete spin projection zN = s, as well as on the
parameters µk, νk and on the Euler angles α, β. The dependence of the marginal distribution
on the Euler angle γ disappears, as was shown in the previous section, due to the structure of
Wigner D-functions.

In order to obtain an analogue of the Pauli evolution equation for the marginal distribution,
we consider the general equation (16) where the operator K̂(z′, σ ′) has the form

K̂(z′, σ ′) = 1

8π2

N−1⊗
k=1

K̂(xk, µk, νk) ⊗ K̂(1/2)(s, α, β). (58)

Here, the operator K̂(xk, µk, νk) has the form of equation (31) with ε = 1, and the operator
K̂(1/2)(s, α, β) is given by formula (52) with j = 1

2 . Moreover, we have to introduce
the marginal distribution w(�x, �µ, �ν, s, α, β, t) describing a state of a spin- 1

2 particle, which
depends on the continuous variables �x, discrete spin projection s, symplectic reference frame’s
labels �µ and �ν, and Euler angles α and β. Then, for a given Hamiltonian Ĥ , the general
equation (16) takes the form of a Pauli-like equation

∂t w(�x, �µ, �ν, s, α, β, t) =
1/2∑

s ′=−1/2

∫
d �X′ d �µ′ d�ν ′ d6′ w(�x ′, �µ′, �ν ′, s ′, α′, β ′, t)

×9(�x, �µ, �ν, s, α, β; �x ′, �µ′, �ν ′, s ′, α′, β ′) (59)

where

9 = i

8π2
〈〈�x, s|

[
N−1⊗
k=1

K̂(x ′
k, µ

′
k, ν

′
k) ⊗ K̂(1/2)(s ′, α′, β ′), Ĥ

]
|�x, s〉〉. (60)
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The structure of the derived Pauli-like equation for probability distributions depends on the
particular tomography schemes we have considered. Obviously, it would be useful to find
schemes, which give the simplest form for such a dynamical equation; nevertheless, this is a
non-trivial problem related to the possibility to find a properly transformed projector (11). The
properties of such projectors were investigated in [21] but for different purposes.

6.1. Limit cases

Now we consider two limit cases of the above equation (59).
First of all, we consider the spatial (one-dimensional) case of free motion

Ĥ = p̂2

2
. (61)

The spin part does not contribute since Ĥ does not contain the spin operators, that is,∫
d6′

8π2
w(s ′, α′, β ′,−)〈〈s|K̂(j)(s ′, α′, β ′)|s〉〉 =

j∑
m1,m2=−j

D(j)
s m1

(α, β, γ )D(j) ∗
s m2

(α, β, γ )

×
2j∑

j3=0

j3∑
m3=−j3

j∑
s ′=−j

(−1)m2−s ′
(2j3 + 1)2W

j

s ′
j

−s ′
j3
0 Wj

m1

j
−m2

j3
m3

×
∫

d6′

8π2
w(s ′, α′, β ′,−)D

(j3)

0m3
(α′, β ′, γ ′) = w(s, α, β,−) (62)

where − indicates the other possible variables. Then, for what concerns the spatial part, it is
important to calculate the commutator between the kernel and the Hamiltonian, given by[

eiµ′q̂eiν ′p̂, p̂2
] = eiµ′q̂eiν ′p̂(−2µ′p̂ − µ′2). (63)

Now, one can write

∂t w(x, µ, ν, t) = i

4π

∫
dx ′ dµ′ dν ′ w(X′, µ′, ν ′, t) e−iX′+iµ′ν ′/2

×
∫

dq 〈〈x|eiµ′q̂eiν ′p̂|q〉〈q|(−2µ′p̂ − µ′2)|x〉〉. (64)

By using the explicit form for the wavefunctions 〈q|x〉〉 (22) together with the homogeneous
property (29), it is possible to reduce the above equation to a very simple form

∂t w = µ∂ν w (65)

which was derived in a different way in [13].
As the second case, we study the dynamics of spin- 1

2 degree only. The Hamiltonian we
are interested to consider is

Ĥ =
(

a 0

0 c

)
. (66)

Of course, the spatial degree is not affected, so its variables can be disregarded; this also results
from the fact that

1

2π

∫
dx ′ dµ′ dν ′ w(x ′, µ′, ν ′,−) 〈〈x|eiµ′q̂eiν ′p̂|x〉〉 e−ix ′+iµ′ν ′/2 = w(x,µ, ν,−). (67)
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In this case, the relation between the transformed spin state and the non-transformed one is
given by

|s〉〉 = D̂
(1/2) ∗
s 1/2 (α, β) | 1

2 〉 + D̂
(1/2) ∗
s −1/2 (α, β) | − 1

2 〉. (68)

Again, the central task is to calculate the commutator between the kernel and the Hamiltonian.
It is easy to see that

〈〈s|[K̂(1/2)(s ′, α′, β ′), Ĥ
]|s〉〉 = (−1)−s ′

1∑
j3=0

W
1
2
s ′

1
2
−s ′

j3
0 (2j3 + 1)2

×
1/2∑

m1 �=m2,−1/2

(−1)m2

j3∑
m3=−j3

D
(j3)

0m3
(α′, β ′, γ ′)W

1
2
m1

1
2−m2

j3
m3

×(−1)(1/2)−m2(a − c)D(1/2)
s m1

(α, β, γ )D(1/2) ∗
s m2

(α, β, γ ). (69)

In view of the properties of the Wigner-3j symbols, we can see that the terms with j3 = 0, 1
and m3 = 0 do not contribute. Thus, we obtain

∂t w( 1
2 , α, β, t) =

∫
d6′

8π2

[
w( 1

2 , α
′, β ′, t) − w(− 1

2 , α
′, β ′, t)

]
× 3

2 (a − c) sin β ′ sin β sin(α − α′) (70)

and, by using the normalization condition, equation (70) can be rewritten as

∂t w(s, α, β, t) = 3(a − c) sin β
∫

d6′

8π2
w(s, α′, β ′, t) sin β ′ sin(α − α′) (71)

which is similar to the relationship derived in [17] (the difference is due to the degeneracy
of the spin- 1

2 system). It should be noted that the argument s is the same on both sides of

equation (71); this is consistent with the fact that Ĥ in equation (66) does not mix states with
different s. On the other hand, it can be easily checked that the sum over s on the right-hand
side of equation (71) causes the integral to be equal to zero; this is consistent with the fact that
on the left-hand side of (71) we obtain the time derivative of a constant. Also, if a = c, the
right-hand side of equation (71) is equal to zero, since the Hamiltonian (66) is proportional to
the identity and does not produce any evolution.

7. Examples

In the previous section, we discussed the probability of the joint measurement of the spin and
spatial variables. Therefore, here we would like to consider some examples involving both
variables.

At first, we consider a system with the following Hamiltonian:

Ĥ = 1
2

(
p̂2 + q̂2

)
+
(| 1

2 〉〈 1
2 | − |− 1

2 〉〈− 1
2 |). (72)

It could describe, for example, one vibrational degree of a trapped electron plus its spin
[29]. The measurability of marginals in this system was investigated in [30]. Here, as a
straightforward extension of the arguments of section (6.1), we obtain

∂t w(x, µ, ν, s, α, β) = (µ∂ν − ν∂µ)w(x, µ, ν, s, α, β)

+6 sin β
∫

d6′

8π2
w(x,µ, ν, s, α′, β ′, t) sin β ′ sin(α − α′). (73)
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Let us now consider an initial entangled state like

:(0) = 1√
2

(|0〉 ⊗ |− 1
2 〉 + |1〉 ⊗ | 1

2 〉) (74)

where |n〉 represents the number eigenstate of a harmonic oscillator. The following marginal
corresponds to the wavefunction given by equation (74):

w(x,µ, ν, s, α, β, t = 0) = 1
2

[
w00↓↓ + w11↑↑ + w01↓↑ + w10↑↓

]
(75)

where

w00↓↓ = 1√
π(µ2 + ν2)

exp

[
− x2

µ2 + ν2

]
D

(1/2) ∗
s −1/2 (α, β, γ )D

(1/2)
s −1/2(α, β, γ )

w11↑↑ = 2x2√
π(µ2 + ν2)3

exp

[
− x2

µ2 + ν2

]
D

(1/2) ∗
s 1/2 (α, β, γ )D

(1/2)
s 1/2 (α, β, γ )

w01↓↑ = i
√

2x(ν − iµ)√
π(µ2 + ν2)3

exp

[
− x2

µ2 + ν2

]
D

(1/2) ∗
s −1/2 (α, β, γ )D

(1/2)
s 1/2 (α, β, γ )

w10↑↓ = w∗
01↓↑.

Then, the solution of the Pauli equation (73) results

w(x,µ, ν, s, α, β, t) = 1
2

[
w00↓↓ + w11↑↑ + w01↓↑e3it + w10↑↓e−3it

]
. (76)

As the second example, we consider the case of Landau levels [31], i.e. a charged particle
moving in the classical magnetic field �B, which is time-independent and axial symmetric. The
particle’s movement along the axis is free. The Hamiltonian of the transverse motion reads

Ĥ = 1
2

[(
p̂1 − Â1

)2
+
(
p̂2 − Â2

)2
]

�̂A =
[

�B × �̂r
2

]
(77)

where �̂r = (
q̂1, q̂2

)
is the radius vector of the particle’s centre, p̂1 and p̂2 are the particle’s

momentum components in the transverse plane. Having �B along the third axis and choosing
| �B| = 2, we obtain

Ĥ = 1
2

(
p̂2

1 + p̂2
2 + q̂2

1 + q̂2
2

)
+
(
p̂1q̂2 − p̂2q̂1

)
+
(| 1

2 〉〈 1
2 | − |− 1

2 〉〈− 1
2 |). (78)

In this case, the kernel 9 of equation (60) is given by

9 = i

4π2

∫
dq1

ν1

∫
dq2

ν2
exp

{
i

2∑
l=1

[
µ′
lν

′
l

2 − x ′
l

+ µl(ql − ν ′
l ) +

xlν
′
l + µlν

′
l
2 − µlν

′
l ql

νl

]}

×
{ 2∑

l=1

µ′
lµlql

νl
− µ′

lxl

νl + ν ′
l ql

− µ′
l
2

2
− ν ′

l
2

2
− (x2 − µ2q2)ν

′
1

ν2

+(µ′
2q1 − µ′

2ν
′
1) +

(x1 − µ1q1)ν
′
2

ν1
− (µ′

1q2 − µ′
1ν

′
2)

}
δs,s ′ δ(6 − 6′)

+
6

8π2
sin β sin β ′ sin(α − α′) δ(�x − �x ′) δ( �µ − �µ′) δ(�ν − �ν ′). (79)

As a non-trivial example, we also consider here an initial state, which is the entangled
superposition

:(0) = 1√
2

[|0 0〉 ⊗ |− 1
2 〉 + |1 0〉 ⊗ | 1

2 〉]. (80)
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It leads to a non-factorizable marginal

w(�x, �µ, �ν, s, α, β, t = 0) = 1
2

[
w0000↓↓ + w1010↑↑ + w0010↓↑ + w1000↑↓

]
(81)

where

wn1 n2 n
′
1 n

′
2,m1 m2 = wn1 n2 n

′
1 n

′
2
D(1/2) ∗

s m1
(α, β, γ )D(1/2)

s m2
(α, β, γ ). (82)

Here, m1 = − 1
2 (m1 = 1

2 ) replaces the downarrow (uparrow), while the spatial part wn1 n2 n
′
1 n

′
2

is calculated explicitly in the appendix.
Equation (59) with the kernel (79) appears extremely cumbersome; however, its solution

can be obtained in a straightforward way. In fact, given the initial condition (81), one can try
to obtain a solution of the form

w(�x, �µ, �ν, s, α, β, t) = 1
2

[
w0000↓↓ f1(t) + w1010↑↑ f2(t) + w0010↓↑ f3(t) + w1000↑↓ f4(t)

]
(83)

where fj (j = 1, . . . , 4) are functions of time determined by the condition fj (t = 0) = 1.
Then, the trial function (83) inserted into the Pauli equation yields, after some algebra, a simple
system of ordinary differential equations

∂tf1(t) = 0 ∂tf2(t) = 0 ∂tf3(t) = 3if3(t) ∂tf4(t) = −3if4(t). (84)

Thus, the desired solution results

w(�x, �µ, �ν, s, α, β, t) = 1
2

[
w0000↓↓ + w1010↑↑ + w0010↓↑e3it + w1000↑↓e−3it

]
. (85)

8. Conclusion

We conclude that it is possible to obtain an evolution equation for the tomographic probabilities
(marginal distributions) of an arbitrary tomography scheme. The main result of our paper is
the analogue of the Pauli equation for the spin- 1

2 particle.
The explicit expression for the marginal distribution for a trapped particle, as well as for

Landau levels, has been studied. The distributions obey the analogue of the Pauli equation.
The examples considered demonstrate that the usual problems of conventional quantum

mechanics can be cast into a form, in which only positive probabilities are used to describe
quantum states and their evolution. A possible disadvantage of the approach proposed is a
complicated evolution equation (59) but, perhaps, this is the price one ought to pay for the
possibility of describing quantum objects in terms of classical probabilities.

The classical space has symmetry properties related to its geometry [32]. To extend our
approach to relativistic quantum mechanics, one should take into account the geometry of the
space–time described by the Poincaré group.

Our argument can constitute a step further from the Bohr position [33] concerning the
inapplicability of classical modes of the description in the quantum domain. In fact, while we
believe that quantum mechanics is not classical physics, we retain (some) classical concepts
still applicable against counterintuitive notions such as complex wavefunctions.

We also believe that the classical-like formalism developed could be applied to describe
quantum mechanical paradoxes, because usually, if there is a paradox in quantum mechanics,
there should also be a classical one, perhaps, even worse [32]. These aspects will be investigated
in a forthcoming paper, as well as the extension of the presented approach to the relativistic
domain [34], in order to find an analogue of the Dirac equation.
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Appendix

The wavefunction of the particle’s coherent state in the magnetic field �B is [35]

:α,β(q1, q2) = 1√
π

exp

{
−q2

1 + q2
2

2
− |α|2

2
− |β|2

2
− iαβ + β(q1 + iq2) + iα(q1 − iq2)

}
(A1)

where q1 and q2 are the particle’s coordinates and α and β are complex numbers.
The coherent state (A1) is the superposition of number states [35]

:α,β(q1, q2) = exp

(
−|α|2

2
− |β|2

2

) ∞∑
n=0

∞∑
n′=0

αnβn′
:nn′(q1, q2)√
n!n′!

. (A2)

In view of the general relationship between the marginal distribution and the wavefunction [36],
we have

w(x1, x2, µ1, ν1, µ2, ν2) = 1

4π2|ν1ν2|

×
∣∣∣∣
∫ ∫

exp

(
iy2

1µ1

2ν1
− iy1x1

ν1
+

iy2
2µ2

2ν2
− iy2x2

ν2

)
:αβ(y1, y2) dy1 dy2

∣∣∣∣
2

where parameters µ1, ν1, µ2, ν2, as usual, mark reference frames; then, one obtains for the
marginal distribution of the particle’s coherent state without spin in the magnetic field the
following expression:

wα β(x1, x2, µ1, ν1, µ2, ν2) = exp
[−|α|2 − |β|2 − i(αβ − α∗β∗)

]
π

√(
ν2

1 + µ2
1

)(
ν2

2 + µ2
2

)

× exp

{
(ν1 + iµ1)(iαν1 + βν1 − ix1)

2 + (ν1 − iµ1)
(−iα∗ν1β

∗ν1 + ix1
)2

2ν1
(
µ2

1 + ν2
1

)

+
(ν2 + iµ2)(αν2 + iβν2 − ix2)

2 + (ν2 − iµ2)
(
α∗ν2 − iβ∗ν2 + ix2

)2

2ν2
(
µ2

2 + ν2
2

)
}
. (A3)

Multiplying (A3) by exp(|α|2 + |β|2) and expanding the expression obtained into power series,
we arrive at

wα β(x1, x2, µ1, ν1, µ2, ν2)e
|α|2 e|β|2 =

∞∑
n1,n2,n

′
1,n

′
2=0

αn1(α∗)n2βn′
1(β∗)n

′
2wn1 n2 n

′
1 n

′
2√

n1! n2! n′
1! n′

2!
. (A4)
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Taking into account the property of the generating function for multivariate Hermite
polynomials [37], namely

exp
{− 1

2 �uM �u + �uM�ζ} =
∞∑

n1,n2,n
′
1,n

′
2=0

αn1(α∗)n2βn′
1(β∗)n

′
2

n1! n2! n′
1! n′

2!
H

{M}
n1 n2 n

′
1 n

′
2
(�ζ ) (A5)

with the vector �u = (α, α∗, β, β∗), and comparing (A4) with (A5), we obtain

wn1 n2 n
′
1 n

′
2
(x1, x2, µ1, ν1, µ2, ν2)

= 1

π

√(
ν2

1 + µ2
1

)(
ν2

2 + µ2
2

) exp

(
− x2

1

µ2
1 + ν2

1

− x2
2

µ2
2 + ν2

2

) H
{M}
n1 n2 n

′
1 n

′
2
(�ζ )√

n1! n2! n′
1! n′

2!

where the 4 × 4-matrix M reads

M =
(

M(1) M(2)

M(4) M(3)

)
.

The 2 × 2-matrices M(r) are given by

M
(r)
k,l =

2∑
j=1

νj

νj + i(−1)lµj

(−1)j+(r+1)/2 δk+l, even r = 1, 3

M
(r)
k,l =

2∑
j=1

i

[
νj

νj + i(−1)lµj

(−1)l+(j−1)(r/2−1) + (−1)l−1

]
δk+l, even r = 2, 4.

The argument of the multivariate Hermite polynomials �ζ = (
ζ1, ζ

∗
1 , ζ2, ζ

∗
2

)
is expressed in

terms of the parameters as follows:

ζ1 = ix1√
µ2

1 + ν2
1

exp

(
i tan−1 µ2

ν2

)
− x2√

µ2
2 + ν2

2

exp

(
i tan−1 µ1

ν1

)

ζ2 = ix2√
µ2

1 + ν2
1

exp

(
i tan−1 µ1

ν1

)
− x1√

µ2
2 + ν2

2

exp

(
i tan−1 µ2

ν2

)
.

Taking n1 = n2 and n′
1 = n′

2, we obtain the marginal distribution for the Landau-level states
|nn′〉
wnn′(x1, x2, µ1, ν1, µ2, ν2) ≡ wnnn′ n′(x1, x2, µ1, ν1, µ2, ν2)

= 1

π

√(
ν2

1 + µ2
1

)(
ν2

2 + µ2
2

)
n! n′!

exp

(
− x2

1

µ2
1 + ν2

1

− x2
2

µ2
2 + ν2

2

)
H

{M}
n n n′ n′

(�ζ )

where n is the main quantum number and n′ − n = l is the angular-momentum quantum
number.
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